Discrepancy, chaining and subgaussian processes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy, Chaining and Subgaussian Processes

We show that for a typical coordinate projection of a subgaussian class of functions, the infimum over signs inf(εi) supf∈F | ∑k i=1 εif(Xi)| is asymptotically smaller than the expectation over signs as a function of the dimension k, if the canonical Gaussian process indexed by F is continuous. To that end, we establish a bound on the discrepancy of an arbitrary subset of R using properties of ...

متن کامل

Covering numbers, dyadic chaining and discrepancy

is called the star-discrepancy of (z1, . . . , zN ). Here and in the sequel λ denotes the sdimensional Lebesgue measure. The Koksma-Hlawka inequality states that the difference between the integral of a function f over the s-dimensional unit cube and the arithmetic mean of the function values f(z1), . . . , f(zN ) is bounded by the product of the total variation of f (in the sense of Hardy and ...

متن کامل

Analyse fonctionnelle/Functional Analysis Reconstruction and subgaussian processes

This Note presents a randomized method to approximate any vector v from some set T ⊂ R. The data one is given is the set T , and k scalar products (〈Xi, v〉)i=1, where (Xi)i=1 are i.i.d. isotropic subgaussian random vectors in R, and k ¿ n. We show that with high probability any y ∈ T for which (〈Xi, y〉)i=1 is close to the data vector (〈Xi, v〉)i=1 will be a good approximation of v, and that the ...

متن کامل

Empirical Processes: Maximal Inequalities and Chaining

It can be checked that this is a valid norm (on the set of random variables for which the left side of the above display is finite). Of special interest to us will be the Orlicz norms corresponding to the functions {ψp : p ≥ 1} where ψp(x) = exp(xp) − 1. Lemma 8.1 of Kosorok (2008) provides a necessary and sufficient condition for the ψp Orlicz norm to be finite in terms of the tail-behavior of...

متن کامل

A subgaussian embedding theorem

We prove a subgaussian extension of a Gaussian result on embedding subsets of a Euclidean space into normed spaces. Using the concentration of a random subgaussian vector around its mean we obtain an isomorphic (rather than almost isometric) result, under an additional cotype assumption on the normed space considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2011

ISSN: 0091-1798

DOI: 10.1214/10-aop575